Math 522 Exam 4 Solutions

1. For every integer n, prove that n^{5} and n have the same last digit.

BONUS: Prove that n^{10} and $2 n^{6}-n^{2}$ have the same last two digits.
Note that the last digit of a natural number is its remainder upon division by 10 ; two naturals x, y share the same last digit exactly when $10 \mid(x-y)$. [Similarly, x, y share the same last two digits exactly when their remainders upon division by 100 are the same, which is exactly when $100 \mid(x-y)$.]

We first prove both $2 \mid\left(n^{5}-n\right)$ and $5 \mid\left(n^{5}-n\right)$. If n is even, $n^{5}-n$ is the difference of two even numbers and is even; if n is odd then n^{5} is odd, hence $n^{5}-n$ is the difference of two odd numbers and is even. Thus $2 \mid\left(n^{5}-n\right)$. By Fermat's little theorem, $5 \mid\left(n^{5}-n\right)$. Hence $n^{5}-n=2 a=5 b$ for some integers a, b. So $2 \mid 5 b$, and $2 \nmid 5$, so $2 \mid b$ since 2 is prime. So $b=2 c$, and $n^{5}-n=5 b=10 c$, so $10 \mid\left(n^{5}-n\right)$.

BONUS:

$n^{5}-n=10 k$, so $n^{10}-2 n^{6}+n^{2}=\left(n^{5}-n\right)^{2}=100 k^{2}$, so $100 \mid n^{10}-2 n^{6}+n^{2}$.
2. For every prime p, prove that $p \mid(p-2)!-1$.

Solution 1: This is an intermediate step in the second in-class proof of Wilson's theorem. Among $\{1,2, \ldots, p-1\}$ most of the elements pair up as (a, b) where $a \neq b$ and $p \mid a b-1$. The only exceptions are 1 and $p-1$. Hence we rearrange $(p-2)!=1 \cdot\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right) \cdots\left(a_{k} b_{k}\right)$. We now recall the lemma that if $p \mid x-1$ and $p \mid y-1$, then $p \mid x y-1$. [Proved in class, or via $p \mid(x-1)(y-1)=x y-x-y+1=(x y-1)-(x-1)-(y-1)]$. Applying the lemma repeatedly we get $p \mid 1 \cdot\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right) \cdots\left(a_{k} b_{k}\right)-1=(p-2)$! -1 .

Solution 2: Working backwards from Wilson's theorem, $p \mid(p-1)!+1=$ $(p-1)(p-2)!+1=p(p-2)!-(p-2)!+1$. But $p \mid p(p-2)!$, so we subtract the first from the second to get $p \mid p(p-2)!-(p(p-2)!-(p-2)!+1)=(p-2)!-1$.

Solution 3 (Britte, Elizabeth): We start the same way, with Wilson's theorem, $p \mid(p-1)!+1$. But also $p \mid p$, so we subtract the second from the first to get $p \mid(p-1)(p-2)!+1-p=(p-1)((p-2)!-1)$. Since p is prime, either $p \mid p-1$ (impossible) or $p \mid(p-2)!-1$.
3. High score $=100$, Median score $=73.5$, Low score $=52$

